If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+126x=0
a = 3; b = 126; c = 0;
Δ = b2-4ac
Δ = 1262-4·3·0
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-126}{2*3}=\frac{-252}{6} =-42 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+126}{2*3}=\frac{0}{6} =0 $
| 20+3x=3(x+5) | | -18=-7x-3x | | -7a+34=48 | | -3(x+9)=14 | | 12(2x+11)=(12(2x+12) | | 2+13v=-18-7v | | 2^2x+1-3.2^x+1=0 | | 12(2k+11)=(12(2k+12) | | -10+5c+2=3c+8 | | -106=6n+8(1+4) | | n=202n+1 | | 2n+1=20 | | -5-9x=-113 | | -7n+4=-24 | | 25m=15 | | 3(f-15)+-11=4 | | (x-3)^2+(0-1)^2=6^2 | | 21b=33 | | 11x^2-66=0 | | -12j+11j=4 | | (5x-16)^3-4)^3=216000 | | 5b=-80 | | y^2=66 | | 4c+3c=7 | | x2/3=64 | | 2m+4=-32 | | 6^(10x+3)-5=0 | | -9-5t=-6t | | 8/x+4=16/x-1 | | 6^{10x+3}-5=0 | | 0.75m+5=2 | | -2(s-8)=-18 |